HIGH-LEVEL DESIGN OF EMBEDDED HARDWARE-SOFTWARE SYSTEMS
M. S. DOLINSKY, Cand.Sc. (Technical Sciences), Senior Instructor
Skorina State University in Gomel Sovetskaya 104, 246699 Gomel, Belarus
Methods, means, and results of validating an integrated design for embedded hardware-software systems are considered. The methods incorporate tuning to selected or newly designed hardware systems for a general-purpose assembler-disassembler, C compiler, and C&ASM&OBJ debugger, making possible super-high-speed debugging of software required for the target architecture.
1. INTRODUCTION
A significant number of designs now under development in the areas of telecommunications, multimedia, and digital signal processing involve complicated embedded hardware-software systems that must function at high frequencies. An effective method of maintaining competitiveness is to create and master new methods of design at the systems level. The principal factor that will lead to adoption of systems-level methodology is the price that must be paid for errors made at the stage of high-level design. Thus, once the requirements have been established, the functional specifications are created and an appropriate architecture is selected. The basic problem is that design errors may be detectable only at the concluding stage, the stage of integration and testing.
2. DESIGNING EMBEDDING SYSTEMS
Usually, design methodology divides the design of hardware and software systems into two nearly independent stages, which are brought together only at a rather late stage of the design process, the stage of integration and testing. If errors are detected at this time, they may be eliminated with little lose of time by software intervention, though this is really a potential and not the best solution. The long lifetime and high cost of ASIC design compel us to see that correction of errors by means of software tools is the only method. However, the real cost of software solutions may also be very high, since they may reduce the ultimate performance and functionality of the product To ensure a unified design, new generations of workbenches that will make possible the compatible design of hardware and software systems are needed. In [4—6], Mentor Graphics has referred to their approach as "integrated systems design," Cadence has proposed the concept of "block based design," and Synopsis has focused on "behavioral-level design." But all researchers are looking for ways of moving the design process to higher levels of abstraction and supporting repeatedly used blocks of intelligent properties, such as embedded kernels. We will be considering an ideal notion of integrated systems design that is common to all three firms and based on the results of [4—6]. In the integrated approach, two separate design subprocesses, one involving hardware design and the other software design, must be in constant interaction throughout the entire design stage. The conception of such a design stage comprises two phases. In the first phase, in which the requirements (specifications) are established, the goal is to create a functionally correct design. Errors in the specifications and in the architecture must be detected quickly and eliminated, before they have any effect on the succeeding stages of the design. After this process has been completed, the subsequent development may be performed in accordance with strictly defined parameters. The second stage, that of integrated systems design, involves verifying that interaction between the hardware and software systems proceeds correctly. In the course of this stage, a "virtual prototype" is constructed and integrated and tested by means of simulation and emulation systems. The virtual prototype detects any errors before they affect the succeeding development of the design. By eliminating errors on early stages in the design of hardware and software systems, it is possible to achieve a substantial gain in the performance of these systems.
3. IMPLEMENTATION OF THE PROPOSED METHODS

The methods [1—3] of integrated design presuppose software support of the very process and procedures involved in the design process, from the stage of development of specifications for the system which is to be constructed, through the final testing stage. System designers are provided with a whole range of capabilities, for example, documentation of all design stages, and design and simulation of hardware at all levels of abstraction, from the systems level to the register-transfer level; compatible simulation of hardware-software systems created in parallel; and the development and debugging of firmware and software written in Assembler and ANSI C. Synchronous utilization of the running state of development is maintained throughout the entire design process.
3.1. Formal description of architecture
The method of formal description of the architecture of an embedded system has been proposed as a means of describing the kernel of the processor, storage components, peripheral devices, and even the external operating environment The metalanguage used to implement the method possesses powerful embedded declarative capabilities that basically encompass the entire range of architectural features (system of instructions, addressing modes, the organization of the interrupt mechanism, and integrated peripherals, such as timers, sequential and parallel ports, and analog-to-digital converters). Moreover, an algorithmic description of the properties of the designed system that do not fit within the framework of the declarative capabilities of the metalanguage is maintained. The formal description concludes with a specification of Assembler syntax. The formal description has as its ultimate result a model of the finished system to make it possible to develop assembler-language programs for the system and to investigate the characteristics of the system, for example, to measure the time it takes to execute program fragments by specifying the time-varying parameters of system instructions and components, modify the system of commands, vary the properties of the peripheral devices, and so on. The stage of investigation of the characteristics of the finished system concludes with development of a complete and accurate specification for the development of hardware and software.
3.2. Tuning the C program compiler
It has been proposed that an ANSI C program compiler tuned to the target architecture should be used to enable more effective software development. The kernel of the compiler should consist of a series of components responsible for the compiler interface, preprocessor, lexical and syntactic analysis, system for management of the resources of the abstract processor, and a general code generation scheme. The user-created tuned compiler will be responsible for implementation of the C language primitives on the particular processor. Here, by a C language primitive, we understand operations, operators, declarations, and functions. The tuned portion constitutes a set of functions that invoke the compiler so as to generate an implementation of C language primitives on the Assembler of the described target architecture. Control over the adequacy of the compiler adaptation is supported, on the one hand, by the presence of a complete set of C compiler tests, and, on the other hand, by the capability for automatic simulation of all test C programs compiled in the target architecture assembler, together -with automatic verification that the obtained results are correct based on testing of the target architecture. Compiler tuning makes it possible to debug software packages for the target architecture using Assembler and C.
3.3. Tuning of a general-purpose assembler-disassembler
The development of debugging tools for a finished system is performed by tuning a general-purpose assembler-disassembler to the mnemonics, formats, and instruction machine codes corresponding to a specified assembler. The descriptive metalanguage is mainly declarative, though it preserves algorithmic capabilities for the resolution of complex collisions. Once the assembler/disassembler has been tuned, the ANSI C compiler is able to generate not only Assembler-language texts, but to also directly produce machine codes. Moreover, test codes for testing the developed hardware systems may be produced on the basis of debugged initial texts of the completed software.
3.4. Design of microprogrammed devices
If useful for a purely hardware implementation of the design, a method for computer-aided design of microprogrammed devices may be proposed. Such a method will make possible the rapid development of operating algorithms for a finished system through the use of the language of microprogrammed devices and a rather powerful subset of the C language. The method also makes possible automatic generation of the specifications of the corresponding microprogrammed devices in the input languages of computer-aided design systems, for example, very-high design language.
3.5. High-level chip design
A method of sequential, hierarchically organized approximations to the specification of the computer-aided design system written in input languages should be used in the development of the hardware of the finished system. The hardware portion is considered as a combination of interacting components. A model of each such component may be determined either by means of decomposition, into standard nodes of average degree of integration, or by means of any one of several methods, for example truth tables, Boolean functions, register-transfer language, microprograms, VHDL-specification, and INTER-specification. A hardware model may be debugged using as tests already functioning software that automatically detect deviations from the standard results.
4. SOFTWARE SUPPORT OF THE METHOD

4.1. General-purpose assembler-disassembler
The ADIS general-purpose assembler-disassembler is a software system that produces a one-to-one correspondence between assembler mnemonics and the machine codes of the target architecture, making possible assembling and disassembling on the basis of this information. Two independent utilities, an assembler and a disassembler, function on the basis of a specific correspondence between the assembler mnemonics and the machine codes. The maximum length of time needed to tune the assembler-disassembler to a specified architecture is one man-week. .
4.2. DCC C compiler tuned to a target architecture
The ANSI C compiler with DCC programs (Dolphin C" compiler) is a software system that makes it possible to describe the generation of code of a required architecture for standard primitives of the ANSI C programming language. As a result, the user obtains a C compiler for a specified architecture with average compilation time indicators and average generated code implementation time. It is also possible to generate optimized code. The maximum length of time needed to tune the compiler to a target architecture is one man-month.
4.3. INTER multifunctional debugger
By means of the INTER multifunctional debugger-interpreter, it is possible to rapidly create a specification of a finished system together with its peripheral devices and to develop and investigate software for this system. It is also possible to modify and investigate different architectures. By tuning a general-purpose debugging environment to an arbitrary processor, it becomes possible, on the one hand, to develop a debugger right after the development of the processor, and, on the other hand, to simulate the processor together with local peripheral devices and the external environment, i.e., transducers, control objects, etc. The absence of any link between the debugging environment and a particular processor helps in its development and makes it suitable for any processor.
A whole list of already implemented processor specifications attests to the effectiveness of the proposed approach. These include:
• digital signal processors from Texas Instruments (TMS320c25, 'c30, 'c40, 'c50, 'c80 (Master Processor)) and from Analog Devices (ADSP 210x0);
• transputers (T414, T800);
• popular microcontrollers (PIC, TMS370, MB57);
• popular microprocessors (18051, i8096, i8080,i8086/87, Z80);
• older processors (PDP-11, IBM 360/370, Apple 6502);
• different hypothetical processors, such as a dataflow-controlled processor, database processor, FORTH-language processor, Turing machine processor;
• programmable microcalculators (MK-61, MK-64).
The debugging environment possesses a standard interface (menus, multiwindowing, mouse support, context-sensitive help, color adjustment, maintenance) and a complete set of debugging tools comparable with the best of modem debuggers. Moreover, a broad range of nontraditional capabilities that provide the developer with substantial assistance in the detection and elimination of errors in the software and hardware systems is available.
Incremental debugging technology is among the first of the proposed nontraditional techniques. Simulation is performed directly on the basis of initial program texts, with the editor window and the debugger window made compatible. Compilation of the initial text of the edited program is performed in the background mode just as it is being assembled and edited. This, in turn, makes possible instantaneous transition from program editing to program execution, and conversely.
The debugging environment supports "warm start," i.e., if the developer finds an error during program execution, the error can be corrected right then and there, or execution continued from any point in the program or from the very start, after suitable reinitialization of the data. Obviously, in this mode the time it takes to localize and correct errors is substantially reduced.
A system of data visualization, which is a powerful tool that is also easy for the developer to apply, is another nontraditional tool:
• user-defined ordinal and real types (with the capability to scan data in the indicated type along with standard types, e.g., binary, octal, hexadecimal, symbolic, and real types in IEEE format);
• the capability to specify assembler operands and expressions on these operands directly for purposes of visualization and to replace the Assembler-language operand and expression in the name field by an arbitrary mnemonic (in Latin as well as in Russian, for example, "Dlina stroki" in place of Table [AX]);
• display window, in which an arbitrary text file is read into a special window at an arbitrary position of which an expression, assembler operand, value of a program variable, or developer-specified element of processor memory, peripheral device, or user-defined external environment is displayed overlying a picture (or text) that has been output. Together with multiwindowing, this capability makes possible effective orientation of the developer to the processes occurring in the designed system, the debugging program, peripheral devices, and external environment;
• "device window" — once this window has been opened, the user gains access to a powerful editor of the structural and functional circuits of the device and the names of the contacts on which the descriptions are associated automatically with the corresponding variables;
• preservation and refreshing of the desktop (the order and position of the program text windows, registers, memory blocks, display windows, etc.) without having to reset the state of program execution.
The third type of nontraditional tools consists in an apparatus of "shadow" commands, These commands commence with a comment symbol and, therefore, when placed in the comment line or comment field, are invisible to all the other workbenches (assemblers, debuggers). At the same time, for the debugging environment they constitute commands to execute definite useful actions:
• assign values to fragments of a designed system (command $S) or compare them to standard expressions ($T). Shadow commands $S and $T are very useful for managing the process of computer-aided testing of subroutines and program fragments. Moreover, by means of the command $T (once it has been placed at program break points), it is possible to manage the process of computer-aided error localization.
• assign a value to the system components randomly after execution of each instruction or after the passage of a certain number of processor cycles. This command makes possible stochastic simulation of the external environment (for example, management of the proces of interrupt simulation).
• execute the metafunction $1 (recall that any processor instruction is a metafunction, moreover the developer may define his own metafunctions by means of sequential metainstructions). This shadow command is useful for the development of powerful tests consisting of only several short lines (for management of the shadow cycle, shifts, incrementing and decrementing, etc.).
• write to disk a portion of the processor storage, peripheral device, and external environment. This shadow command is useful for producing binary prototypes. Moreover, it may be used for generating the machine code for a debugging Assembler-language program.
4.4. System for computer-aided design of microprogrammed devices
The computer-aided microprogrammed design system enables the user to describe the operating algorithm of fully designed equipment either in powerful microprogram Assembler, including, in particular, a complete of arithmetic, logic, and shift instructions, but also compare and control transfer instructions, or in a special subset of the C language. The microprograms are debugged using the tools of the INTER multifunctional debugger. From a debugging microprogram, specifications of microprogrammed devices in input languages (VHDL, for example) of systems for computer-aided layout design may be automatically created.

4.5. Toolkit for high-level chip computer-aided design
A toolkit for high-level chip computer-aided design is intended for the design of hardware as a process consisting in both top-down as well as bottom-up multi-level simulation of designs, using a abundant set of methods for the design of models of design components. The following capabilities are the principal advantages of the toolkit:
• linkage of processors created by means of the INTER multifunctional debugger as model components;
• simulation of program execution on a system, one part of which is the INTER model of processors, and the other, the HLCCAD model of the hardware environment;
• generation of VHDL models of processors from their corresponding INTER models.
5. EXAMPLES OF ACCEPTANCE OF METHOD AND EQUIPMENT
5.1. Remote collection of transducer readings
The management of the company, having come to a decision to develop and mass produce a device for remote collection of transducer readings, decided on the development of a special microcontroller (subsequently called the NT8020). Following refinement of the specifications for the NT8020 architecture, studies were initiated on VHDL design of the NT8020. At the same time, efforts to adapt general-purpose tools to the NT8020 architecture were undertaken for two months. And in the course of another month, an embedded system control program that envisages application of the NT8020 microcontroller was developed and debugged. Let us emphasize that only when software development was complete did the first models of NT8020 chips appear. By this time, an assembler-disassembler for the NT8020, ANSI C compiler for the NT8020, program debugger (simulator) for the NT8020, as well as a control program for the NT8020-based Remote Transducer Readings Collection device (with complete simulation of the entire device, including the kernel of the NT8020 microcontroller, embedded and external peripheral devices, and an external operating environment!) were already in existence and had already been subjected to serious testing.
5.2. pH Meter
Another company decided to adapt an existing microcontroller, the Intel 8051, as a base microcontroller, in the development of a device for use in measurement of the electrical properties of liquid containing ions of different elements. Preliminary analysis demonstrated that it is necessary to employ two Intel 8051 microcontrollers, the first for measurements and calculations proper, and the second for maintaining the user-device interface (control of the keyboards and the liquid-crystal raster display). The debugging tools were adapted in the course of one month. In the course of an additional two months, a library of real arithmetic and certain transcendental functions (exponential function, logarithm, and others), a library for raster display control and the control program proper, were developed. Once again, all the software systems (with complete simulation of the microcontroller proper, the peripheral devices, and the device's external environment) were being developed long before the first prototype of the device had been produced, which not only shortened the total development time for the device, but also substantially simplified debugging of the hardware.
6. CONCLUSION

The methods and tools for high-level design of embedded hardware-software systems that have been described in the present article sharply reduce the length of the development period and improve the performance of these systems, in each of the following possible major directions:
• enable selection, as base microprocessor, of an existing microprocessor or microprocessor for which there exists the types of debugging tools which the system developers have specified;
• enable selection, as base microprocessor, of a microprocessor possessing difficult or poorly developed debugging tools;
• make possible development of a microprocessor system;
• undertake, where necessary, an alternative investigation of several processors (whether existing processors or newly developed processors);
• decide to develop a special processor for the solution of particular problems;
• real time conditions mandate the exclusive use of ASIC-based hardware (Application Specified Integrated Circuits).
REFERENCES

1. M. S. Dolinsky, I. M. Ziselman, and S. L. Belotskii, "Adaptable debugger-interpreter for assembler-language programs," Programmirovanie, no. 6, pp. 36-45,1995.
2. I. V. Maximey, M. S. Dolinsky, and V. D. Levchuk, "Program technological tools for complex system modeling," Advances in Modeling & Analysis, vol. 39, no. 1, pp. 1-10, 1993.
3. M. Dolinsky, I. Ziselman, A. Harrasov, and V. Kovaluck, "Program system for computer-aided synthesis off device with microprogram control," Proc. Intern. Conference "CAD of Digital Devices, Minsk, 1995, pp. 146-147.
4. B. Bailey and S. Leef, "Making the shift toward integrated systems design," Electronic Design, pp. 80-86, July 8, 1996.
5. P. George, "Block-based design: creating a system on a chip," Electronic Design, pp. 86-92, July 8, 1996.
6. P. Femandes, "Moving from RTL to behavioral-level design," Electronic Design, pp. 92-98, July 8,1996.
Received 10 February 1997 (originally submitted 5 June 1996)
